Back to Search Start Over

Hybrid topological photonic crystals

Authors :
Yanan Wang
Hai-Xiao Wang
Li Liang
Weiwei Zhu
Longzhen Fan
Zhi-Kang Lin
Feifei Li
Xiao Zhang
Pi-Gang Luan
Yin Poo
Jian-Hua Jiang
Guang-Yu Guo
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Topologically protected photonic edge states offer unprecedented robust propagation of photons that are promising for waveguiding, lasing, and quantum information processing. Here, we report on the discovery of a class of hybrid topological photonic crystals that host simultaneously quantum anomalous Hall and valley Hall phases in different photonic band gaps. The underlying hybrid topology manifests itself in the edge channels as the coexistence of the dual-band chiral edge states and unbalanced valley Hall edge states. We experimentally realize the hybrid topological photonic crystal, unveil its unique topological transitions, and verify its unconventional dual-band gap topological edge states using pump-probe techniques. Furthermore, we demonstrate that the dual-band photonic topological edge channels can serve as frequency-multiplexing devices that function as both beam splitters and combiners. Our study unveils hybrid topological insulators as an exotic topological state of photons as well as a promising route toward future applications in topological photonics.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.89ac52d52f9c4b8fbbd1c55603b2c80a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-40172-6