Back to Search
Start Over
A SARS-CoV-2 Fractional-Order Mathematical Model via the Modified Euler Method
- Source :
- Mathematical and Computational Applications, Vol 27, Iss 5, p 82 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- This article develops a within-host viral kinetics model of SARS-CoV-2 under the Caputo fractional-order operator. We prove the results of the solution’s existence and uniqueness by using the Banach mapping contraction principle. Using the next-generation matrix method, we obtain the basic reproduction number. We analyze the model’s endemic and disease-free equilibrium points for local and global stability. Furthermore, we find approximate solutions for the non-linear fractional model using the Modified Euler Method (MEM). To support analytical findings, numerical simulations are carried out.
Details
- Language :
- English
- ISSN :
- 22978747 and 1300686X
- Volume :
- 27
- Issue :
- 5
- Database :
- Directory of Open Access Journals
- Journal :
- Mathematical and Computational Applications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8990c76cbc4054997f7672fe24a814
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/mca27050082