Back to Search Start Over

On Unsupervised Methods for Medical Image Segmentation: Investigating Classic Approaches in Breast Cancer DCE-MRI

Authors :
Carmelo Militello
Andrea Ranieri
Leonardo Rundo
Ildebrando D’Angelo
Franco Marinozzi
Tommaso Vincenzo Bartolotta
Fabiano Bini
Giorgio Russo
Source :
Applied Sciences, Vol 12, Iss 1, p 162 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Unsupervised segmentation techniques, which do not require labeled data for training and can be more easily integrated into the clinical routine, represent a valid solution especially from a clinical feasibility perspective. Indeed, large-scale annotated datasets are not always available, undermining their immediate implementation and use in the clinic. Breast cancer is the most common cause of cancer death in women worldwide. In this study, breast lesion delineation in Dynamic Contrast Enhanced MRI (DCE-MRI) series was addressed by means of four popular unsupervised segmentation approaches: Split-and-Merge combined with Region Growing (SMRG), k-means, Fuzzy C-Means (FCM), and spatial FCM (sFCM). They represent well-established pattern recognition techniques that are still widely used in clinical research. Starting from the basic versions of these segmentation approaches, during our analysis, we identified the shortcomings of each of them, proposing improved versions, as well as developing ad hoc pre- and post-processing steps. The obtained experimental results, in terms of area-based—namely, Dice Index (DI), Jaccard Index (JI), Sensitivity, Specificity, False Positive Ratio (FPR), False Negative Ratio (FNR)—and distance-based metrics—Mean Absolute Distance (MAD), Maximum Distance (MaxD), Hausdorff Distance (HD)—encourage the use of unsupervised machine learning techniques in medical image segmentation. In particular, fuzzy clustering approaches (namely, FCM and sFCM) achieved the best performance. In fact, for area-based metrics, they obtained DI = 78.23% ± 6.50 (sFCM), JI = 65.90% ± 8.14 (sFCM), sensitivity = 77.84% ± 8.72 (FCM), specificity = 87.10% ± 8.24 (sFCM), FPR = 0.14 ± 0.12 (sFCM), and FNR = 0.22 ± 0.09 (sFCM). Concerning distance-based metrics, they obtained MAD = 1.37 ± 0.90 (sFCM), MaxD = 4.04 ± 2.87 (sFCM), and HD = 2.21 ± 0.43 (FCM). These experimental findings suggest that further research would be useful for advanced fuzzy logic techniques specifically tailored to medical image segmentation.

Details

Language :
English
ISSN :
12010162 and 20763417
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.898fa7df6de49268f5fb49fb4c85846
Document Type :
article
Full Text :
https://doi.org/10.3390/app12010162