Back to Search Start Over

Computational promoter analysis of mouse, rat and human antimicrobial peptide-coding genes

Authors :
Kai Chikatoshi
Hume David A
Lin Chin-Yo
Krishnan SPT
Chowdhary Rajesh
Tan Sin
Huang Enli
Yang Liang
Schönbach Christian
Brahmachary Manisha
Kawai Jun
Carninci Piero
Hayashizaki Yoshihide
Bajic Vladimir B
Source :
BMC Bioinformatics, Vol 7, Iss Suppl 5, p S8 (2006)
Publication Year :
2006
Publisher :
BMC, 2006.

Abstract

Abstract Background Mammalian antimicrobial peptides (AMPs) are effectors of the innate immune response. A multitude of signals coming from pathways of mammalian pathogen/pattern recognition receptors and other proteins affect the expression of AMP-coding genes (AMPcgs). For many AMPcgs the promoter elements and transcription factors that control their tissue cell-specific expression have yet to be fully identified and characterized. Results Based upon the RIKEN full-length cDNA and public sequence data derived from human, mouse and rat, we identified 178 candidate AMP transcripts derived from 61 genes belonging to 29 AMP families. However, only for 31 mouse genes belonging to 22 AMP families we were able to determine true orthologous relationships with 30 human and 15 rat sequences. We screened the promoter regions of AMPcgs in the three species for motifs by an ab initio motif finding method and analyzed the derived promoter characteristics. Promoter models were developed for alpha-defensins, penk and zap AMP families. The results suggest a core set of transcription factors (TFs) that regulate the transcription of AMPcg families in mouse, rat and human. The three most frequent core TFs groups include liver-, nervous system-specific and nuclear hormone receptors (NHRs). Out of 440 motifs analyzed, we found that three represent potentially novel TF-binding motifs enriched in promoters of AMPcgs, while the other four motifs appear to be species-specific. Conclusion Our large-scale computational analysis of promoters of 22 families of AMPcgs across three mammalian species suggests that their key transcriptional regulators are likely to be TFs of the liver-, nervous system-specific and NHR groups. The computationally inferred promoter elements and potential TF binding motifs provide a rich resource for targeted experimental validation of TF binding and signaling studies that aim at the regulation of mouse, rat or human AMPcgs.

Details

Language :
English
ISSN :
14712105
Volume :
7
Issue :
Suppl 5
Database :
Directory of Open Access Journals
Journal :
BMC Bioinformatics
Publication Type :
Academic Journal
Accession number :
edsdoj.8978801594044d1ab6e56099d29e8c0d
Document Type :
article
Full Text :
https://doi.org/10.1186/1471-2105-7-S5-S8