Back to Search
Start Over
Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans
- Source :
- Ecotoxicology and Environmental Safety, Vol 217, Iss , Pp 112239- (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Neurotransmission related signals are involved in the control of response to toxicants. We here focused on the tyramine and the glutamate related signals to determine their roles in regulating nanoplastic toxicity in Caenorhabditis elegans. In the range of μg/L, exposure to nanopolystyrene (100 nm) increased the expression of tdc-1 encoding a tyrosine decarboxylase required for synthesis of tyramine, and decreased the expression of eat-4 encoding a glutamate transporter. Both TDC-1 and EAT-4 could act in the neurons to regulate the nanopolystyrene toxicity. Meanwhile, neuronal RNAi knockdown of tdc-1 induced a susceptibility to nanopolystyrene toxicity, and neuronal RNAi knockdown of eat-4 induced a resistance to nanopolystyrene toxicity. In the neurons, TYRA-2 functioned as the corresponding receptor of tyramine and acted upstream of MPK-1 signaling to regulate the nanopolystyrene toxicity. Moreover, during the control of nanopolystyrene toxicity, GLR-4 and GLR-8 were identified as the corresponding glutamate receptors, and acted upstream of JNK-1 signaling and DBL-1 signaling, respectively. Our results demonstrated the crucial roles of tyramine and glutamate related signals in regulating the toxicity of nanoplastics in organisms.
Details
- Language :
- English
- ISSN :
- 01476513
- Volume :
- 217
- Issue :
- 112239-
- Database :
- Directory of Open Access Journals
- Journal :
- Ecotoxicology and Environmental Safety
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8973297eb842441ab2025c44fd27f94e
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.ecoenv.2021.112239