Back to Search Start Over

Stranding of larval nase (Chondrostoma nasus L.) depending on bank slope, down-ramping rate and daytime

Authors :
Simon Führer
Daniel S. Hayes
Thomas Hasler
David R. M. Graf
Elora Fauchery
Daniel Mameri
Stefan Schmutz
Stefan Auer
Source :
Frontiers in Environmental Science, Vol 10 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Rapid water level decreases due to hydropeaking are known to negatively affect riverine biota, mainly due to the stranding of organisms in the river bank area that becomes regularly dewatered. Even though studies of the last decades have focused on salmonid fish, also cyprinids may be affected. However, limited knowledge is available of this fish family. Therefore, we conducted mesocosm experiments under semi-natural conditions, simulating single hydropeaking events at two different lateral bank slopes (2% and 5%) with varying down-ramping rates (0.7–3.0 cm min−1) during day and night. As a response parameter, we quantified stranding rates of different larval stages (III-IV and V) of common nase (Chondrostoma nasus L.). The experiments revealed that lower sloped banks exhibited distinctly higher stranding rates than steeper ones. Daytime revealed a similar pattern, with more fish becoming stranded at night than during the day, and this was consistent for all down-ramping rates. The data also indicate increased stranding with higher down-ramping rates, particularly at low sloped riverbanks, and interaction effects between the tested parameters. Overall, this study, for the first time, quantifies the consequences of flow down-ramping on nase larvae, also revealing differences between larval stages. The gained information will, therefore, advance the ongoing discussion on hydropeaking mitigation by providing a deeper understanding of the effects of artificial sub-daily flow fluctuations on the early life stages of cyprinid fish. Our results can inform management and policy to sharpen existing mitigation concepts and fine-tune hydropower operations to reduce negative effects on riverine ecosystems.

Details

Language :
English
ISSN :
2296665X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
Frontiers in Environmental Science
Publication Type :
Academic Journal
Accession number :
edsdoj.8959eda259204870927937642dc2af81
Document Type :
article
Full Text :
https://doi.org/10.3389/fenvs.2022.966418