Back to Search Start Over

Spatial Prediction of Wildfire Susceptibility Using Hybrid Machine Learning Models Based on Support Vector Regression in Sydney, Australia

Authors :
Arip Syaripudin Nur
Yong Je Kim
Joon Ho Lee
Chang-Wook Lee
Source :
Remote Sensing, Vol 15, Iss 3, p 760 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Australia has suffered devastating wildfires recently, and is predisposed to them due to several factors, including topography, meteorology, vegetation, and ignition sources. This study utilized a geographic information system (GIS) technique to analyze and understand the factors that regulate the spatial distribution of wildfire incidents and machine learning to predict wildfire susceptibility in Sydney. Wildfire inventory data were constructed by combining the fire perimeter through field surveys and fire occurrence data gathered from the visible infrared imaging radiometer suite (VIIRS)-Suomi thermal anomalies product between 2011 and 2020 for the Sydney area. Sixteen wildfire-related factors were acquired to assess the potential of machine learning based on support vector regression (SVR) and various metaheuristic approaches (GWO and PSO) for wildfire susceptibility mapping in Sydney. In addition, the 2019–2020 “Black Summer” fire acted as a validation dataset to assess the predictive capability of the developed model. Furthermore, the information gain ratio (IGR) method showed that driving factors such as land use, forest type, and slope degree have a large impact on wildfire susceptibility in the study area, and the frequency ratio (FR) method represented how the factors influence wildfire occurrence. Model evaluation based on area under the curve (AUC) and root average square error (RMSE) were used, and the outputs showed that the hybrid-based SVR-PSO (AUC = 0.882, RMSE = 0.006) model performed better than the standalone SVR (AUC = 0.837, RMSE = 0.097) and SVR-GWO (AUC = 0.873, RMSE = 0.080) models. Thus, optimizing SVR with metaheuristics improved the accuracy of wildfire susceptibility modeling in the study area. The proposed framework can be an alternative to the modeling approach and can be adapted for any research related to the susceptibility of different disturbances.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.894b1a71dbd459caafb41aa401161dd
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15030760