Back to Search
Start Over
AI supported fetal echocardiography with quality assessment
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-9 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract This study aimed to develop a deep learning model to assess the quality of fetal echocardiography and to perform prospective clinical validation. The model was trained on data from the 18–22-week anomaly scan conducted in seven hospitals from 2008 to 2018. Prospective validation involved 100 patients from two hospitals. A total of 5363 images from 2551 pregnancies were used for training and validation. The model's segmentation accuracy depended on image quality measured by a quality score (QS). It achieved an overall average accuracy of 0.91 (SD 0.09) across the test set, with images having above-average QS scoring 0.97 (SD 0.03). During prospective validation of 192 images, clinicians rated 44.8% (SD 9.8) of images as equal in quality, 18.69% (SD 5.7) favoring auto-captured images and 36.51% (SD 9.0) preferring manually captured ones. Images with above average QS showed better agreement on segmentations (p
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.893b8353e9154aa598fcf9ba1b3580c9
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-56476-6