Back to Search Start Over

Morphological Accuracy Data Clustering: A Novel Algorithm for Enhanced Cluster Analysis

Authors :
Abdel Fattah Azzam
Ahmed Maghrabi
Eman El-Naqeeb
Mohammed Aldawood
Hewayda ElGhawalby
Source :
Applied Computational Intelligence and Soft Computing, Vol 2024 (2024)
Publication Year :
2024
Publisher :
Hindawi Limited, 2024.

Abstract

In today’s data-driven world, we are constantly exposed to a vast amount of information. This information is stored in various information systems and is used for analysis and management purposes. One important approach to handle these data is through the process of clustering or categorization. Clustering algorithms are powerful tools used in data analysis and machine learning to group similar data points together based on their inherent characteristics. These algorithms aim to identify patterns and structures within a dataset, allowing for the discovery of hidden relationships and insights. By partitioning data into distinct clusters, clustering algorithms enable efficient data exploration, classification, and anomaly detection. In this study, we propose a novel centroid-based clustering algorithm, namely, the morphological accuracy clustering algorithm (MAC algorithm). The proposed algorithm uses a morphological accuracy measure to define the centroid of the cluster. The empirical results demonstrate that the proposed algorithm achieves a stable clustering outcome in fewer iterations compared to several existing centroid-based clustering algorithms. Additionally, the clusters generated by these existing algorithms are highly susceptible to the initial centroid selection made by the user.

Details

Language :
English
ISSN :
16879732
Volume :
2024
Database :
Directory of Open Access Journals
Journal :
Applied Computational Intelligence and Soft Computing
Publication Type :
Academic Journal
Accession number :
edsdoj.88ef3ae4aba246dfa3be88909a82ff16
Document Type :
article
Full Text :
https://doi.org/10.1155/2024/3795126