Back to Search Start Over

OCCUPANCY MODELLING FOR MOVING OBJECT DETECTION FROM LIDAR POINT CLOUDS: A COMPARATIVE STUDY

Authors :
W. Xiao
B. Vallet
Y. Xiao
J. Mills
N. Paparoditis
Source :
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol IV-2-W4, Pp 171-178 (2017)
Publication Year :
2017
Publisher :
Copernicus Publications, 2017.

Abstract

Lidar technology has been widely used in both robotics and geomatics for environment perception and mapping. Moving object detection is important in both fields as it is a fundamental step for collision avoidance, static background extraction, moving pattern analysis, etc. A simple method involves checking directly the distance between nearest points from the compared datasets. However, large distances may be obtained when two datasets have different coverages. The use of occupancy grids is a popular approach to overcome this problem. There are two common theories employed to model occupancy and to interpret the measurements, Dempster- Shafer theory and probability. This paper presents a comparative study of these two theories for occupancy modelling with the aim of moving object detection from lidar point clouds. Occupancy is modelled using both approaches and their implementations are explained and compared in details. Two lidar datasets are tested to illustrate the moving object detection results.

Details

Language :
English
ISSN :
21949042 and 21949050
Volume :
IV-2-W4
Database :
Directory of Open Access Journals
Journal :
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.8872da02c744aa68a3bc5df2ff7c139
Document Type :
article
Full Text :
https://doi.org/10.5194/isprs-annals-IV-2-W4-171-2017