Back to Search Start Over

LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells

Authors :
Jingwei Zhang
Thomas Sommermann
Xun Li
Lutz Gieselmann
Kathrin de la Rosa
Maria Stecklum
Florian Klein
Christine Kocks
Klaus Rajewsky
Source :
Frontiers in Immunology, Vol 14 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

IntroductionEpstein-Barr virus (EBV) infection in humans is associated with a wide range of diseases including malignancies of different origins, most prominently B cells. Several EBV latent genes are thought to act together in B cell immortalization, but a minimal set of EBV genes sufficient for transformation remains to be identified.MethodsHere, we addressed this question by transducing human peripheral B cells from EBV-negative donors with retrovirus expressing the latent EBV genes encoding Latent Membrane Protein (LMP) 1 and 2A and Epstein-Barr Nuclear Antigen (EBNA) 2.ResultsLMP1 together with EBNA2, but not LMP1 alone or in combination with LMP2A was able to transform human primary B cells. LMP1/EBNA2-immortalized cell lines shared surface markers with EBV-transformed lymphoblastoid cell lines (LCLs). They showed sustained growth for more than 60 days, albeit at a lower growth rate than EBV-transformed LCLs. LMP1/EBNA2-immortalized cell lines generated tumors when transplanted subcutaneously into severely immunodeficient NOG mice. ConclusionOur results identify a minimal set of EBV proteins sufficient for B cell transformation.

Details

Language :
English
ISSN :
16643224
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Immunology
Publication Type :
Academic Journal
Accession number :
edsdoj.8852a3cd953b41d59483648d9256e588
Document Type :
article
Full Text :
https://doi.org/10.3389/fimmu.2023.1331730