Back to Search Start Over

Mutual Diffusion of Model Acceptor/Donor Bilayers under Solvent Vapor Annealing as a Novel Route for Organic Solar Cell Fabrication

Authors :
Paweł Dąbczyński
Gabriela Wójtowicz
Jakub Rysz
Source :
Energies, Vol 15, Iss 3, p 1033 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The fabrication of bulk heterojunction organic solar cells (OSCs) is primarily based on a phase demixing during solution deposition. This spontaneous process is triggered when, as a result of a decrease in the solvent concentration, interactions between donor and acceptor molecules begin to dominate. Herein, we present that interdiffusion of the same molecules is possible when a bilayers of donors and acceptors are exposed to solvent vapor. Poly(3-hexyl thiophene) (P3HT), and poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) were used as donors and two types of fullerene derivatives were used as acceptors: phenyl-C61-butyric acid methyl ester (PC60BM) and phenyl-C71-butyric acid methyl ester (PC70BM), Secondary ion mass spectrometry depth profiling revealed that the interpenetration of donors and acceptors induced by solvent vapor annealing was dependent on solvent vapor and component compatibility. Exposure to chloroform vapor resulted in a complete intermixing of both components. The mutual mixing increased efficiency of inverted solar cells prepared by solvent vapor annealing of model donor/acceptor bilayers. These results provide a new means for mixing incompatible components for the fabrication of organic solar cells.

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.880dfbd7139348ccbd29ce65ebc87f70
Document Type :
article
Full Text :
https://doi.org/10.3390/en15031033