Back to Search Start Over

BRD4 expression and its regulatory interaction with miR-26a-3p, DLG5-AS1, and JMJD1C-AS1 lncRNAs in gastric cancer progression

Authors :
Mahya Ahmadpour Youshanlui
Amirhossein Yari
Seyedeh Zahra Bahojb Mahdavi
Mohammad Amini
Behzad Baradaran
Ramin Ahangar
Omid Pourbagherian
Amir Ali Mokhtarzadeh
Source :
Discover Oncology, Vol 15, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Springer, 2024.

Abstract

Abstract Gastric cancer remains a significant health challenge despite advancements in diagnosis and treatment. Early detection is critical to reducing mortality, necessitating the investigation of molecular mechanisms underlying gastric cancer progression. This study focuses on BRD4 expression and its correlation with miR-26a-3p, DLG5-AS1, and JMJD1C-AS1 lncRNAs in gastric cancer. Analysis of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed significant upregulation of BRD4 in gastric cancer tissues compared to normal tissues, correlating negatively with miR-26a-3p and positively with DLG5-AS1 and JMJD1C-AS1 lncRNAs. Quantitative RT-PCR confirmed these findings in 25 gastric cancer tissue samples and 25 normal samples. BRD4's overexpression was associated with reduced survival rates and older patient age. MiR-26a-3p, a known tumor suppressor, showed decreased expression in gastric cancer tissues, with ROC analysis suggesting it, alongside BRD4, as a potential diagnostic biomarker. Additionally, bioinformatics predicted miR-26a-3p’s interaction with BRD4 mRNA. Upregulated lncRNAs DLG5-AS1 and JMJD1C-AS1 likely act as competing endogenous RNAs, sponging miR-26a-3p, thus promoting BRD4 dysregulation. These lncRNAs have not been previously studied in gastric cancer. The findings propose a novel BRD4/lncRNA/miRNA regulatory axis in gastric cancer, highlighting the potential of BRD4, DLG5-AS1, and JMJD1C-AS1 as biomarkers for early diagnosis. Further studies with larger sample sizes and in vivo and in vitro experiments are needed to elucidate this regulatory mechanism’s role in gastric cancer progression.

Details

Language :
English
ISSN :
27306011
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Discover Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.87ffa16cfad485ab4626b16ec140e67
Document Type :
article
Full Text :
https://doi.org/10.1007/s12672-024-01230-7