Back to Search
Start Over
Energy Required for Erosive Wear of Cermet Coatings Sprayed Using the High-Velocity Oxygen Fuel Method on a Magnesium Alloy Substrate
- Source :
- Energies, Vol 17, Iss 13, p 3320 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- The manuscript analyzes the impact of the HVOF (high-velocity oxygen fuel) coating spraying technology on a substrate made of a light and high-specific-strength magnesium casting alloy from the AZ31 series. Among others, the following were examined: the influence of the spraying distance of coatings using commercial cermet powders (WC–Co, WC–Co–Cr, and WC–Cr3C2–Ni) on their resistance to erosive wear. It is worth emphasizing the energy savings resulting from the possibility of spraying on the surfaces of existing machine parts to protect or regenerate them. Energy savings result from the possibility of recycling the substrate material (AZ31), as well as from extending the functionality of an existing element without the need to dispose of it and the energy-intensive production of a new component. Tests have shown that the best resistance to the destructive effects of erodent in the form of hard corundum particles is characterized by a WC–Co–Cr coating sprayed at a distance of 320 mm.
- Subjects :
- energy consumption
parts recycling
erosion rate
energy efficiency
Technology
Subjects
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 17
- Issue :
- 13
- Database :
- Directory of Open Access Journals
- Journal :
- Energies
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.87f0e35a78324d6e900ac718fb5cc357
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/en17133320