Back to Search Start Over

Regulatory Action of Plasma from Patients with Obesity and Diabetes towards Muscle Cells Differentiation and Bioenergetics Revealed by the C2C12 Cell Model and MicroRNA Analysis

Authors :
Natalya V. Khromova
Anton V. Fedorov
Yi Ma
Kirill A. Kondratov
Stanislava S. Prikhodko
Elena V. Ignatieva
Marina S. Artemyeva
Anna D. Anopova
Aleksandr E. Neimark
Anna A. Kostareva
Alina Yu. Babenko
Renata I. Dmitrieva
Source :
Biomolecules, Vol 11, Iss 6, p 769 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Obesity and type 2 diabetes mellitus (T2DM) are often combined and pathologically affect many tissues due to changes in circulating bioactive molecules. In this work, we evaluated the effect of blood plasma from obese (OB) patients or from obese patients comorbid with diabetes (OBD) on skeletal muscle function and metabolic state. We employed the mouse myoblasts C2C12 differentiation model to test the regulatory effect of plasma exposure at several levels: (1) cell morphology; (2) functional activity of mitochondria; (3) expression levels of several mitochondria regulators, i.e., Atgl, Pgc1b, and miR-378a-3p. Existing databases were used to computationally predict and analyze mir-378a-3p potential targets. We show that short-term exposure to OB or OBD patients’ plasma is sufficient to affect C2C12 properties. In fact, the expression of genes that regulate skeletal muscle differentiation and growth was downregulated in both OB- and OBD-treated cells, maximal mitochondrial respiration rate was downregulated in the OBD group, while in the OB group, a metabolic switch to glycolysis was detected. These alterations correlated with a decrease in ATGL and Pgc1b expression in the OB group and with an increase of miR-378a-3p levels in the OBD group.

Details

Language :
English
ISSN :
2218273X
Volume :
11
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
edsdoj.87886df5fe92487d98aaeb6e9894b33c
Document Type :
article
Full Text :
https://doi.org/10.3390/biom11060769