Back to Search
Start Over
Machine learning opportunities for nucleosynthesis studies
- Source :
- Frontiers in Astronomy and Space Sciences, Vol 11 (2024)
- Publication Year :
- 2024
- Publisher :
- Frontiers Media S.A., 2024.
-
Abstract
- Nuclear astrophysics is an interdisciplinary field focused on exploring the impact of nuclear physics on the evolution and explosions of stars and the cosmic creation of the elements. While researchers in astrophysics and in nuclear physics are separately using machine learning approaches to advance studies in their fields, there is currently little use of machine learning in nuclear astrophysics. We briefly describe the most common types of machine learning algorithms, and then detail their numerous possible uses to advance nuclear astrophysics, with a focus on simulation-based nucleosynthesis studies. We show that machine learning offers novel, complementary, creative approaches to address many important nucleosynthesis puzzles, with the potential to initiate a new frontier in nuclear astrophysics research.
Details
- Language :
- English
- ISSN :
- 2296987X
- Volume :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Astronomy and Space Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8732ccaeea34a7f953bb189db5b3fce
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fspas.2024.1494439