Back to Search Start Over

Machine learning opportunities for nucleosynthesis studies

Authors :
Michael S. Smith
Dan Lu
Source :
Frontiers in Astronomy and Space Sciences, Vol 11 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Nuclear astrophysics is an interdisciplinary field focused on exploring the impact of nuclear physics on the evolution and explosions of stars and the cosmic creation of the elements. While researchers in astrophysics and in nuclear physics are separately using machine learning approaches to advance studies in their fields, there is currently little use of machine learning in nuclear astrophysics. We briefly describe the most common types of machine learning algorithms, and then detail their numerous possible uses to advance nuclear astrophysics, with a focus on simulation-based nucleosynthesis studies. We show that machine learning offers novel, complementary, creative approaches to address many important nucleosynthesis puzzles, with the potential to initiate a new frontier in nuclear astrophysics research.

Details

Language :
English
ISSN :
2296987X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Astronomy and Space Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.8732ccaeea34a7f953bb189db5b3fce
Document Type :
article
Full Text :
https://doi.org/10.3389/fspas.2024.1494439