Back to Search Start Over

A highly sensitive modified triple split ring metamaterial-based sensor for blood sample detection based on dielectric property alteration

Authors :
Abdullah Al Mahfazur Rahman
Mohammad Tariqul Islam
Phumin Kirawanich
Badariah Bais
Haitham Alsaif
Abdulwadoud A. Maash
Ahasanul Hoque
Md. Moniruzzaman
Md. Shabiul Islam
Mohamed S. Soliman
Source :
APL Materials, Vol 12, Iss 7, Pp 071103-071103-19 (2024)
Publication Year :
2024
Publisher :
AIP Publishing LLC, 2024.

Abstract

This research paper demonstrates a metamaterial (MTM) based sensing technique to detect various blood samples by analyzing their dielectric properties. The performance of this MTM-based sensor is evaluated with the help of mimicked human blood samples that closely resemble the dielectric properties of actual human blood samples. Moreover, the ISM band frequency of 2.4 GHz is chosen as one of the reference resonance frequencies due to its various industrial and medical applications. The resonating patch is developed on the FR-4 substrate with a dimension of 10 × 20 mm2 that provides sharp reference resonances of 2.4 and 4.72 GHz for the spectra of the transmission coefficient with a good quality factor (Q-factor). The MTM sensor can detect the mimicked blood samples with a maximum frequency deviation of up to 650 MHz at 2.4 GHz and up to 850 MHz at 4.72 GHz, with maximum sensitivity of 0.917 and 0.707, respectively. The measured results using the prototype of the sensor support the simulation result with good agreement, indicating high sensing capability. Due to its high sensitivity, figure of merit (FoM), and frequency shifting with dielectric property changes in blood samples, the developed MTM-based sensor can be implemented effectively for quick sensing of infected blood samples and biomedical applications.

Details

Language :
English
ISSN :
2166532X
Volume :
12
Issue :
7
Database :
Directory of Open Access Journals
Journal :
APL Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.86fbe46c3714285949b302445660a4a
Document Type :
article
Full Text :
https://doi.org/10.1063/5.0218374