Back to Search
Start Over
Quantitative uniqueness and vortex degree estimates for solutions of the Ginzburg-Landau equation
- Source :
- Electronic Journal of Differential Equations, Vol 2000, Iss 61, Pp 1-15 (2000)
- Publication Year :
- 2000
- Publisher :
- Texas State University, 2000.
-
Abstract
- In this paper, we provide a sharp upper bound for the maximal order of vanishing for non-minimizing solutions of the Ginzburg-Landau equation $$ Delta u=-{1overepsilon^2}(1-|u|^2)u $$ which improves our previous result cite{Ku2}. An application of this result is a sharp upper bound for the degree of any vortex. We treat Dirichlet (homogeneous and non-homogeneous) as well as Neumann boundary conditions.
- Subjects :
- Unique continuation
vortices
Ginzburg-Landau equation.
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 10726691
- Volume :
- 2000
- Issue :
- 61
- Database :
- Directory of Open Access Journals
- Journal :
- Electronic Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.86fb941c086d4b2dbe09535857f579e8
- Document Type :
- article