Back to Search Start Over

Nanostructured surface topographies have an effect on bactericidal activity

Authors :
Songmei Wu
Flavia Zuber
Katharina Maniura-Weber
Juergen Brugger
Qun Ren
Source :
Journal of Nanobiotechnology, Vol 16, Iss 1, Pp 1-9 (2018)
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Abstract Background Due to the increased emergence of antimicrobial resistance, alternatives to minimize the usage of antibiotics become attractive solutions. Biophysical manipulation of material surface topography to prevent bacterial adhesion is one promising approach. To this end, it is essential to understand the relationship between surface topographical features and bactericidal properties in order to develop antibacterial surfaces. Results In this work a systematic study of topographical effects on bactericidal activity of nanostructured surfaces is presented. Nanostructured Ormostamp polymer surfaces are fabricated by nano-replication technology using nanoporous templates resulting in 80-nm diameter nanopillars. Six Ormostamp surfaces with nanopillar arrays of various nanopillar densities and heights are obtained by modifying the nanoporous template. The surface roughness ranges from 3.1 to 39.1 nm for the different pillar area parameters. A Gram-positive bacterium, Staphylococcus aureus, is used as the model bacterial strain. An average pillar density at ~ 40 pillars μm−2 with surface roughness of 39.1 nm possesses the highest bactericidal efficiency being close to 100% compared with 20% of the flat control samples. High density structures at ~ 70 pillars μm−2 and low density structures at

Details

Language :
English
ISSN :
14773155
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.86df44fef7394c90a9ed7afe904be8ff
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-018-0347-0