Back to Search Start Over

Zalypsis has in vitro activity in acute myeloid blasts and leukemic progenitor cells through the induction of a DNA damage response

Authors :
Enrique Colado
Teresa Paíno
Patricia Maiso
Enrique M. Ocio
Xi Chen
Stela Álvarez-Fernández
Norma C. Gutiérrez
Jesús Martín-Sánchez
Juan Flores-Montero
Laura San Segundo
Mercedes Garayoa
Diego Fernández-Lázaro
Maria-Belen Vidriales
Carlos M. Galmarini
Pablo Avilés
Carmen Cuevas
Atanasio Pandiella
Jesús F. San-Miguel
Source :
Haematologica, Vol 96, Iss 5 (2011)
Publication Year :
2011
Publisher :
Ferrata Storti Foundation, 2011.

Abstract

Background Although the majority of patients with acute myeloid leukemia initially respond to conventional chemotherapy, relapse is still the leading cause of death, probably because of the presence of leukemic stem cells that are insensitive to current therapies. We investigated the antileukemic activity and mechanism of action of zalypsis, a novel alkaloid of marine origin.Design and Methods The activity of zalypsis was studied in four acute myeloid leukemia cell lines and in freshly isolated blasts taken from patients with acute myeloid leukemia before they started therapy. Zalypsis-induced apoptosis of both malignant and normal cells was measured using flow cytometry techniques. Gene expression profiling and western blot studies were performed to assess the mechanism of action of the alkaloid.Results Zalypsis showed a very potent antileukemic activity in all the cell lines tested and potentiated the effect of conventional antileukemic drugs such as cytarabine, fludarabine and daunorubicin. Interestingly, zalypsis showed remarkable ex vivo potency, including activity against the most immature blast cells (CD34+ CD38− Lin−) which include leukemic stem cells. Zalypsis-induced apoptosis was the result of an important deregulation of genes involved in the recognition of double-strand DNA breaks, such as Fanconi anemia genes and BRCA1, but also genes implicated in the repair of double-strand DNA breaks, such as RAD51 and RAD54. These gene findings were confirmed by an increase in several proteins involved in the pathway (pCHK1, pCHK2 and pH2AX).Conclusions The potent and selective antileukemic effect of zalypsis on DNA damage response mechanisms observed in acute myeloid leukemia cell lines and in patients’ samples provides the rationale for the investigation of this compound in clinical trials.

Details

Language :
English
ISSN :
03906078 and 15928721
Volume :
96
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Haematologica
Publication Type :
Academic Journal
Accession number :
edsdoj.86c04c8ca31e4c4e9ae165d0cff57a91
Document Type :
article
Full Text :
https://doi.org/10.3324/haematol.2010.036400