Back to Search Start Over

Spatial subsetting enables integrative modeling of oral squamous cell carcinoma multiplex imaging data

Authors :
Jakob Einhaus
Dyani K. Gaudilliere
Julien Hedou
Dorien Feyaerts
Michael G. Ozawa
Masaki Sato
Edward A. Ganio
Amy S. Tsai
Ina A. Stelzer
Karl C. Bruckman
Jonas N. Amar
Maximilian Sabayev
Thomas A. Bonham
Joshua Gillard
Maïgane Diop
Amelie Cambriel
Zala N. Mihalic
Tulio Valdez
Stanley Y. Liu
Leticia Feirrera
David K. Lam
John B. Sunwoo
Christian M. Schürch
Brice Gaudilliere
Xiaoyuan Han
Source :
iScience, Vol 26, Iss 12, Pp 108486- (2023)
Publication Year :
2023
Publisher :
Elsevier, 2023.

Abstract

Summary: Oral squamous cell carcinoma (OSCC), a prevalent and aggressive neoplasm, poses a significant challenge due to poor prognosis and limited prognostic biomarkers. Leveraging highly multiplexed imaging mass cytometry, we investigated the tumor immune microenvironment (TIME) in OSCC biopsies, characterizing immune cell distribution and signaling activity at the tumor-invasive front. Our spatial subsetting approach standardized cellular populations by tissue zone, improving feature reproducibility and revealing TIME patterns accompanying loss-of-differentiation. Employing a machine-learning pipeline combining reliable feature selection with multivariable modeling, we achieved accurate histological grade classification (AUC = 0.88). Three model features correlated with clinical outcomes in an independent cohort: granulocyte MAPKAPK2 signaling at the tumor front, stromal CD4+ memory T cell size, and the distance of fibroblasts from the tumor border. This study establishes a robust modeling framework for distilling complex imaging data, uncovering sentinel characteristics of the OSCC TIME to facilitate prognostic biomarkers discovery for recurrence risk stratification and immunomodulatory therapy development.

Details

Language :
English
ISSN :
25890042
Volume :
26
Issue :
12
Database :
Directory of Open Access Journals
Journal :
iScience
Publication Type :
Academic Journal
Accession number :
edsdoj.869544f8ba5e4b78a97cd60fb2d44b05
Document Type :
article
Full Text :
https://doi.org/10.1016/j.isci.2023.108486