Back to Search
Start Over
Plasmin Generation Potential and Recanalization in Acute Ischaemic Stroke; an Observational Cohort Study of Stroke Biobank Samples
- Source :
- Frontiers in Neurology, Vol 11 (2020)
- Publication Year :
- 2020
- Publisher :
- Frontiers Media S.A., 2020.
-
Abstract
- Rationale: More than half of patients who receive thrombolysis for acute ischaemic stroke fail to recanalize. Elucidating biological factors which predict recanalization could identify therapeutic targets for increasing thrombolysis success.Hypothesis: We hypothesize that individual patient plasmin potential, as measured by in vitro response to recombinant tissue-type plasminogen activator (rt-PA), is a biomarker of rt-PA response, and that patients with greater plasmin response are more likely to recanalize early.Methods: This study will use historical samples from the Barcelona Stroke Thrombolysis Biobank, comprised of 350 pre-thrombolysis plasma samples from ischaemic stroke patients who received serial transcranial-Doppler (TCD) measurements before and after thrombolysis. The plasmin potential of each patient will be measured using the level of plasmin-antiplasmin complex (PAP) generated after in-vitro addition of rt-PA. Levels of antiplasmin, plasminogen, t-PA activity, and PAI-1 activity will also be determined. Association between plasmin potential variables and time to recanalization [assessed on serial TCD using the thrombolysis in brain ischemia (TIBI) score] will be assessed using Cox proportional hazards models, adjusted for potential confounders.Outcomes: The primary outcome will be time to recanalization detected by TCD (defined as TIBI ≥4). Secondary outcomes will be recanalization within 6-h and recanalization and/or haemorrhagic transformation at 24-h. This analysis will utilize an expanded cohort including ~120 patients from the Targeting Optimal Thrombolysis Outcomes (TOTO) study.Discussion: If association between proteolytic response to rt-PA and recanalization is confirmed, future clinical treatment may customize thrombolytic therapy to maximize outcomes and minimize adverse effects for individual patients.
Details
- Language :
- English
- ISSN :
- 16642295
- Volume :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Neurology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.86906486acd54bac865705d696765ecb
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fneur.2020.589628