Back to Search
Start Over
Endoplasmic reticulum stress promotes the release of exosomal PD-L1 from head and neck cancer cells and facilitates M2 macrophage polarization
- Source :
- Cell Communication and Signaling, Vol 20, Iss 1, Pp 1-13 (2022)
- Publication Year :
- 2022
- Publisher :
- BMC, 2022.
-
Abstract
- Abstract Background Endoplasmic reticulum (ER) stress has been found to foster the escape of cancer cells from immune surveillance and upregulate PD-L1 expression. However, the underlying mechanisms are unknown. Methods While analyzing the protein levels using immunofluorescence and Western blotting, the RNA levels were measured using qRT-PCR. Ten injection of exosomes into six-week-old nude mice was made through the tail vein once every other day in total. Results The expression of certain ER stress markers such as PERK (PKR-like endoplasmic reticulum kinase), ATF6 (activating transcription factor 6), and GRP78 (glucose-regulated protein 78), was found to be upregulated in the oral squamous cell carcinoma (OSCC) tissues and related to poor overall survival. There is a positive relationship between the extent of ER stress-related proteins and a cluster of PD-L1 expression and macrophage infiltration among the OSCC tissues. Further, incubation with exosomes derived from ER-stressed HN4 cells (Exo-ER) was found to upregulate PD-L1 extents in macrophages in vitro and in vivo, and macrophage polarization toward the M2 subtype was promoted by upregulating PD-L1. Conclusions ER stress causes OSCC cells to secrete exosomal PD-L1 and upregulates PD-L1 expression in macrophages to drive M2 macrophage polarization. The delineation of a new exosome-modulated mechanism was made for OSCC–macrophage crosstalk driving tumor development and to be examined for its therapeutic use. Graphical abstract Exosomal PD-L1 secreted by ER-stressed OSCC cells promoted M2 macrophage polarization. Video Abstract.
Details
- Language :
- English
- ISSN :
- 1478811X
- Volume :
- 20
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Communication and Signaling
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.868ed24dc86c4bcaa43e09ca0680aaac
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12964-021-00810-2