Back to Search Start Over

Chestnut Honey Is Effective against Mixed Biofilms at Different Stages of Maturity

Authors :
Regina Koloh
Viktória L. Balázs
Lilla Nagy-Radványi
Béla Kocsis
Erika Beáta Kerekes
Marianna Kocsis
Ágnes Farkas
Source :
Antibiotics, Vol 13, Iss 3, p 255 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The irresponsible overuse of antibiotics has increased the occurrence of resistant bacterial strains, which represents one of the biggest patient safety risks today. Due to antibiotic resistance and biofilm formation in bacteria, it is becoming increasingly difficult to suppress the bacterial strains responsible for various chronic infections. Honey was proven to inhibit bacterial growth and biofilm development, offering an alternative solution in the treatment of resistant infections and chronic wounds. Our studies included chestnut honey, valued for its high antibacterial activity, and the bacteria Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and S. epidermidis, known to form multi-species biofilm communities. Minimum inhibitory concentrations (MIC) of chestnut honey were determined for each bacterial strain. Afterwards, the mixed bacterial biofilms were treated with chestnut honey at different stages of maturity (incubation times: 2, 4, 6, 12, 24 h). The extent of biofilm inhibition was measured with a crystal violet assay and demonstrated by scanning electron microscopy (SEM). As the incubation time increased and the biofilm became more mature, inhibition rates decreased gradually. The most sensitive biofilm was the combination MRSA-S. epidermidis, with a 93.5% inhibition rate after 2 h of incubation. Our results revealed that chestnut honey is suitable for suppressing the initial and moderately mature stages of mixed biofilms.

Details

Language :
English
ISSN :
20796382
Volume :
13
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Antibiotics
Publication Type :
Academic Journal
Accession number :
edsdoj.864f05b26d04488ea7740ddc1d145a8b
Document Type :
article
Full Text :
https://doi.org/10.3390/antibiotics13030255