Back to Search Start Over

Enhancing Annotation Efficiency with Machine Learning: Automated Partitioning of a Lung Ultrasound Dataset by View

Authors :
Bennett VanBerlo
Delaney Smith
Jared Tschirhart
Blake VanBerlo
Derek Wu
Alex Ford
Joseph McCauley
Benjamin Wu
Rushil Chaudhary
Chintan Dave
Jordan Ho
Jason Deglint
Brian Li
Robert Arntfield
Source :
Diagnostics, Vol 12, Iss 10, p 2351 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Background: Annotating large medical imaging datasets is an arduous and expensive task, especially when the datasets in question are not organized according to deep learning goals. Here, we propose a method that exploits the hierarchical organization of annotating tasks to optimize efficiency. Methods: We trained a machine learning model to accurately distinguish between one of two classes of lung ultrasound (LUS) views using 2908 clips from a larger dataset. Partitioning the remaining dataset by view would reduce downstream labelling efforts by enabling annotators to focus on annotating pathological features specific to each view. Results: In a sample view-specific annotation task, we found that automatically partitioning a 780-clip dataset by view saved 42 min of manual annotation time and resulted in 55±6 additional relevant labels per hour. Conclusions: Automatic partitioning of a LUS dataset by view significantly increases annotator efficiency, resulting in higher throughput relevant to the annotating task at hand. The strategy described in this work can be applied to other hierarchical annotation schemes.

Details

Language :
English
ISSN :
20754418
Volume :
12
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Diagnostics
Publication Type :
Academic Journal
Accession number :
edsdoj.85f1ea4e45174b1484ee932f70949d21
Document Type :
article
Full Text :
https://doi.org/10.3390/diagnostics12102351