Back to Search Start Over

Physiologically-based pharmacokinetic/pharmacodynamic modeling of meropenem in critically ill patients

Authors :
Yujie Yang
Yirong Wang
Wei Zeng
Jinhua Zhou
Min Xu
Ying Lan
Lvye Liu
Jian Shen
Chuan Zhang
Qin He
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract This study aimed to develop a physiologically based pharmacokinetic/pharmacodynamic model (PBPK/PD) of meropenem for critically ill patients. A PBPK model of meropenem in healthy adults was established using PK-Sim software and subsequently extrapolated to critically ill patients based on anatomic and physiological parameters. The mean fold error (MFE) and geometric mean fold error (GMFE) methods were used to compare the differences between predicted and observed values of pharmacokinetic parameters Cmax, AUC0-∞, and CL to evaluate the accuracy of the PBPK model. The model was verified using meropenem plasma samples obtained from Intensive Care Unit (ICU) patients, which were determined by HPLC-MS/MS. After that, the PBPK model was combined with a PKPD model, which was developed based on f%T > MIC. Monte Carlo simulation was utilized to calculate the probability of target attainment (PTA) in patients. The developed PBPK model successfully predicted the meropenem disposition in critically ill patients, wherein the MFE average and GMFE of all predicted PK parameters were within the 1.25-fold error range. The therapeutic drug monitoring (TDM) of meropenem was conducted with 92 blood samples from 31 ICU patients, of which 71 (77.17%) blood samples were consistent with the simulated value. The TDM results showed that meropenem PBPK modeling is well simulated in critically ill patients. Monte Carlo simulations showed that extended infusion and frequent administration were necessary to achieve curative effect for critically ill patients, whereas excessive infusion time (> 4 h) was unnecessary. The PBPK/PD modeling incorporating literature and prospective study data can predict meropenem pharmacokinetics in critically ill patients correctly. Our study provides a reference for dose adjustment in critically ill patients.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.85e00cfbc944feeabe5746ecd2e650f
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-64223-0