Back to Search Start Over

Effectiveness of Augmentative Biological Control of Streptomyces griseorubens UAE2 Depends on 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Activity against Neoscytalidium dimidiatum

Authors :
Bader M. Al Hamad
Seham M. Al Raish
Gaber A. Ramadan
Esam Eldin Saeed
Shaikha S. A. Alameri
Salima S. Al Senaani
Synan F. AbuQamar
Khaled A. El-Tarabily
Source :
Journal of Fungi, Vol 7, Iss 11, p 885 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

To manage stem canker disease on royal poinciana, actinobacterial isolates were used as biological control agents (BCAs) based on their strong in vitro inhibitory effects against Neoscytalidiumdimidiatum. Streptomyces griseorubens UAE2 and Streptomyces wuyuanensis UAE1 had the ability to produce antifungal compounds and cell-wall-degrading enzymes (CWDEs). Only S. griseorubens, however, restored the activity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD). In vivo apple fruit bioassay showed that lesion development was successfully constrained by either isolates on fruits inoculated with N. dimidiatum. In our greenhouse and container nursery experiments, S. griseorubens showed almost complete suppression of disease symptoms. This was evident when the preventive treatment of S. griseorubens significantly (p < 0.05) reduced the numbers of conidia of N. dimidiatum and defoliated leaves of royal poinciana seedlings to lesser levels than when S. wuyuanensis was applied, but comparable to control treatments (no pathogen). The disease management of stem canker was also associated with significant (p < 0.05) decreases in ACC levels in royal poinciana stems when S. griseorubens was applied compared to the non-ACCD-producing S. wuyuanensis. This study is the first to report the superiority of antagonistic actinobacteria to enhance their effectiveness as BCAs not only for producing antifungal metabolites and CWDEs but also for secreting ACCD.

Details

Language :
English
ISSN :
2309608X
Volume :
7
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Journal of Fungi
Publication Type :
Academic Journal
Accession number :
edsdoj.85a6d9526c084e77aa0db8831d814b84
Document Type :
article
Full Text :
https://doi.org/10.3390/jof7110885