Back to Search Start Over

Performance comparison of annular and flat-plate thermoelectric generators for cylindrical hot source

Authors :
Mengjun Zhang
Junli Wang
Yuanyuan Tian
Yajie Zhou
Jia Zhang
Huaqing Xie
Zihua Wu
Wenqin Li
Yuanyuan Wang
Source :
Energy Reports, Vol 7, Iss , Pp 413-420 (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Utilizing the heat energy of exhaust gases is a promising application of thermoelectric generator (TEG), which can convert low grade thermal energy into electricity. The annular thermoelectric generator (ATEG) is thought to be much more feasible for cylindrical heat source compared to the flat-plate thermoelectric generator (FTEG) in reference to the compatibility. Nevertheless, the quantitative comparison is lacking to clarify the prevalent geometry of TEG for cylindrical heat source. In this work, the performances of ATEG and FTEG are compared in detail with varying inlet temperature, velocity and the convective heat transfer coefficient when cylindrical heat source is applied. The turbulent heat source is described by the standard κ-ɛ functions together with the two-equation heat transfer model, while the output power and conversion efficiency of the ATEG and FTEG are calculated by solving the coupled thermo-electric equations. Our results showed that the output powers and the conversion efficiencies of ATEG and FTEG both increase with the increase of the inlet velocity, temperature, and the convective heat transfer coefficient. The conversion efficiency of ATEG is always higher than that of FTEG. The conversion efficiency of ATEG becomes even larger than that of FTEG when inlet temperature and/or convective heat transfer coefficient are relatively larger. In contrast, the output power of ATEG has no obvious difference with that of FTEG. This study addressed the condition when the ATEG has obvious advantage compared to the FTEG with cylindrical heat source applied. Our results suggest the annular TEG is better choice for cylindrical hot source especially when the inlet temperature and/or convective heat transfer coefficient are relatively larger. It could be a helpful guide for choosing suitable geometry of TEGs for energy harvesting in complex condition.

Details

Language :
English
ISSN :
23524847
Volume :
7
Issue :
413-420
Database :
Directory of Open Access Journals
Journal :
Energy Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.856fd068cb57476ebae0cb65ebf4a7a9
Document Type :
article
Full Text :
https://doi.org/10.1016/j.egyr.2021.01.008