Back to Search Start Over

Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates

Authors :
Hao Liu
Haixiao Hu
Dongfeng Cao
Yundong Ji
Xiangjiang Wang
Hongda Chen
Shuxin Li
Source :
Materials, Vol 16, Iss 10, p 3697 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In filament wound composites, fiber bundles cross each other and form an undulating architecture, which may significantly affect the mechanical behavior of composites. In this study, the tensile mechanical behavior of filament wound laminates was studied experimentally and numerically, and the influences of the bundle thickness and winding angle on the mechanical behavior of the filament wound plates were also explored. In the experiments, tensile tests were carried out on filament wound plates and laminated plates. It was found that, compared to laminated plates, filament wound plates had lower stiffness, greater failure displacement, similar failure loads, and more obvious strain concentration areas. In numerical analysis, mesoscale finite element models, which take into account the fiber bundles’ undulating morphology, were created. The numerical predictions correlated well with the experimental ones. Further numerical studies have shown that the stiffness reduction coefficient of filament wound plates with a winding angle of ±55° decreased from 0.78 to 0.74 as the bundle thickness increased from 0.4 mm to 0.8 mm. The stiffness reduction coefficients of filament wound plates with wound angles of ±15°, ±25°, and ±45° were 0.86, 0.83, and 0.8, respectively.

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.855f2dd8de64665a58053cdaa45de9b
Document Type :
article
Full Text :
https://doi.org/10.3390/ma16103697