Back to Search Start Over

miRNA Expression Profile and Effect of Wenxin Granule in Rats with Ligation-Induced Myocardial Infarction

Authors :
Aiming Wu
Lixia Lou
Jianying Zhai
Dongmei Zhang
Limin Chai
Bo Nie
Haiyan Zhu
Yonghong Gao
Hongcai Shang
Mingjing Zhao
Source :
International Journal of Genomics, Vol 2017 (2017)
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

Wenxin Granule (WXKL) is a traditional Chinese medicine used for treatment of myocardial infarction (MI) and arrhythmias. However, the genomic pathological mechanisms of MI and mechanisms of WXKL are largely unknown. This study aims to investigate a comprehensive miRNA expression profile, and the predicted correlation pathways to be targeted by differentially expressed miRNAs in MI, and mechanisms of WXKL from a gene level. MI rat model was established by a coronary artery ligation surgery. miRNA expression microarrays were performed and the data were deposited in Gene Expression Omnibus (GEO number GSE95855). And, pathway analysis was performed by using the DIANA-miRPath v3.0 online tool. The expressions of miR-1, miR-133, Cx43, and Cx45 were detected by quantitative real-time PCR. It was found that 35 differentially expressed miRNAs and 23 predicted pathways, including miR-1, miR-133, and gap junction pathway, are involved in the pathogenesis of MI. And, WXKL increased the expressions of miR-1 and miR-133, while also increased the mRNA levels of Cx43 and Cx45, and, especially, recovered the Cx43/Cx45 ratio near to normal level. The results suggest that regulatory effects on miR-1, miR-133, Cx43, and Cx45 might be a possible mechanism of WXKL in the treatment of MI at the gene level.

Subjects

Subjects :
Genetics
QH426-470

Details

Language :
English
ISSN :
2314436X and 23144378
Volume :
2017
Database :
Directory of Open Access Journals
Journal :
International Journal of Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.85314fca770f4678a02c5b19c0ac02f5
Document Type :
article
Full Text :
https://doi.org/10.1155/2017/2175871