Back to Search Start Over

Sb-Based Low-Noise Avalanche Photodiodes

Authors :
Joe C. Campbell
John P. R. David
Seth R. Bank
Source :
Photonics, Vol 10, Iss 7, p 715 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Accurate detection of weak optical signals is a key function for a wide range of applications. A key performance parameter is the receiver signal-to-noise ratio, which depends on the noise of the photodetector and the following electrical circuitry. The circuit noise is typically larger than the noise of photodetectors that do not have internal gain. As a result, a detector that provides signal gain can achieve higher sensitivity. This is accomplished by increasing the photodetector gain until the noise associated with the gain mechanism is comparable to that of the output electrical circuit. For avalanche photodiodes (APDs), the noise that arises from the gain mechanism, impact ionization, increases with gain and depends on the material from which the APD is fabricated. Si APDs have established the state-of-the-art for low-noise gain for the past five decades. Recently, APDs fabricated from two Sb-based III-V compound quaternary materials, AlxIn1-xAsySb1-y and AlxGa1-xAsySb1-y, have achieved noise characteristics comparable to those of Si APDs with the added benefit that they can operate in the short-wave infrared (SWIR) and extended SWIR spectral regions. This paper describes the materials and device characteristics of these APDs and their performance in different spectral regions.

Details

Language :
English
ISSN :
23046732 and 81998074
Volume :
10
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Photonics
Publication Type :
Academic Journal
Accession number :
edsdoj.8522b81998074658a5d788509f32499b
Document Type :
article
Full Text :
https://doi.org/10.3390/photonics10070715