Back to Search Start Over

Experimental study on crack propagation pattern and fracture process zone evolution based on far-field displacement by using DIC

Authors :
Yang Qiao
Xian-bo Guan
Zong-Xian Zhang
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-14 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract This study utilizes digital image correlation (DIC) technology to measure the far-field displacements and strains of rock specimens during the entire loading and unloading. Through analyzing the distributions of strain, displacement and their variations per unit length at different stages, the variations of both length and migration velocity of the fracture process zone (FPZ) were studied, and the crack propagation was also investigated. In addition, the entire path of crack propagation was observed by scanning electron microscope (SEM). The results reveal that (1) the fractured ligament can be divided into three zones based on the displacement variation per unit length: intact zone, crack propagation zone, and FPZ. (2) The FPZ length reaches its maximum at the peak load and then decreases, and the minimum length even is only 1/3–1/2 of the maximum length. The FPZ migration velocity is − 48 to 1460 m/s. FPZ’s microscale features are intergranular microcracks, transgranular microcracks, cleavage, and debris on fracture surface and around main crack propagation path. (3) The crack propagation length during peak load to peak-post 90% accounts for more than 1/3–1/4 of the entire post-peak length. Crack propagation is alternating fast and slow, i.e., the velocity of crack propagation varies regularly in the range of 24–700 m/s. The region of crack initial propagation is more severely damaged compared to other propagation regions.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.8514dc2127074a978b3dc0fb1aa11266
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-44458-z