Back to Search Start Over

Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation

Authors :
Tongtong Li
Boran Wang
Yu Cao
Zhexuan Liu
Shaogang Wang
Qi Zhang
Jie Sun
Guangmin Zhou
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Hydrogen production by seawater electrolysis is significantly hindered by high energy costs and undesirable detrimental chlorine chemistry in seawater. In this work, energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation reaction. We present a bifunctional needle-like Co3S4 catalyst grown on nickel foam with a unique tip structure that enhances the kinetic rate by improving the current density in the tip region. The assembled hybrid seawater electrolyzer combines thermodynamically favorable sulfion oxidation and cathodic seawater reduction can enable sustainable hydrogen production at a current density of 100 mA cm−2 for up to 504 h. The hybrid seawater electrolyzer has the potential for scale-up industrial implementation of hydrogen production by seawater electrolysis, which is promising to achieve high economic efficiency and environmental remediation.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.85145ce6d14f4c04ab2b1e8e2632084a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-49931-5