Back to Search
Start Over
Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Hydrogen production by seawater electrolysis is significantly hindered by high energy costs and undesirable detrimental chlorine chemistry in seawater. In this work, energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation reaction. We present a bifunctional needle-like Co3S4 catalyst grown on nickel foam with a unique tip structure that enhances the kinetic rate by improving the current density in the tip region. The assembled hybrid seawater electrolyzer combines thermodynamically favorable sulfion oxidation and cathodic seawater reduction can enable sustainable hydrogen production at a current density of 100 mA cm−2 for up to 504 h. The hybrid seawater electrolyzer has the potential for scale-up industrial implementation of hydrogen production by seawater electrolysis, which is promising to achieve high economic efficiency and environmental remediation.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.85145ce6d14f4c04ab2b1e8e2632084a
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-49931-5