Back to Search Start Over

Semi-automatic quantification of 4D left ventricular blood flow

Authors :
Dyverfeldt Petter
Carlhäll Carl
Eriksson Jonatan
Engvall Jan
Bolger Ann F
Ebbers Tino
Source :
Journal of Cardiovascular Magnetic Resonance, Vol 12, Iss 1, p 9 (2010)
Publication Year :
2010
Publisher :
Elsevier, 2010.

Abstract

Abstract Background The beating heart is the generator of blood flow through the cardiovascular system. Within the heart's own chambers, normal complex blood flow patterns can be disturbed by diseases. Methods for the quantification of intra-cardiac blood flow, with its 4D (3D+time) nature, are lacking. We sought to develop and validate a novel semi-automatic analysis approach that integrates flow and morphological data. Method In six healthy subjects and three patients with dilated cardiomyopathy, three-directional, three-dimensional cine phase-contrast cardiovascular magnetic resonance (CMR) velocity data and balanced steady-state free-precession long- and short-axis images were acquired. The LV endocardium was segmented from the short-axis images at the times of isovolumetric contraction (IVC) and isovolumetric relaxation (IVR). At the time of IVC, pathlines were emitted from the IVC LV blood volume and traced forwards and backwards in time until IVR, thus including the entire cardiac cycle. The IVR volume was used to determine if and where the pathlines left the LV. This information was used to automatically separate the pathlines into four different components of flow: Direct Flow, Retained Inflow, Delayed Ejection Flow and Residual Volume. Blood volumes were calculated for every component by multiplying the number of pathlines with the blood volume represented by each pathline. The accuracy and inter- and intra-observer reproducibility of the approach were evaluated by analyzing volumes of LV inflow and outflow, the four flow components, and the end-diastolic volume. Results The volume and distribution of the LV flow components were determined in all subjects. The calculated LV outflow volumes [ml] (67 ± 13) appeared to fall in between those obtained by through-plane phase-contrast CMR (77 ± 16) and Doppler ultrasound (58 ± 10), respectively. Calculated volumes of LV inflow (68 ± 11) and outflow (67 ± 13) were well matched (NS). Low inter- and intra-observer variability for the assessment of the volumes of the flow components was obtained. Conclusions This semi-automatic analysis approach for the quantification of 4D blood flow resulted in accurate LV inflow and outflow volumes and a high reproducibility for the assessment of LV flow components.

Details

Language :
English
ISSN :
1532429X and 10976647
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Cardiovascular Magnetic Resonance
Publication Type :
Academic Journal
Accession number :
edsdoj.84b55d904294a73b7704daba474aafc
Document Type :
article
Full Text :
https://doi.org/10.1186/1532-429X-12-9