Back to Search Start Over

Endothelial cells derived extracellular vesicles promote diabetic arterial calcification via circ_0008362/miR-1251-5p/Runx2 axial

Authors :
Xiao Lin
Sha-Qi He
Su-Kang Shan
Feng Xu
Feng Wu
Fu-Xing-Zi Li
Ming-Hui Zheng
Li-Min Lei
Jia-Yue Duan
Yun-Yun Wu
Yan-Lin Wu
Ke-Xin Tang
Rong-Rong Cui
Bei Huang
Jun-Jie Yang
Xiao-Bo Liao
Jun Liu
Ling-Qing Yuan
Source :
Cardiovascular Diabetology, Vol 23, Iss 1, Pp 1-19 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Introduction Arterial calcification, an independent predictor of cardiovascular events, increases morbidity and mortality in patients with diabetes mellitus (DM), but its mechanisms remain unclear. Extracellular vesicles (EVs) play an important role in intercellular communication. The study investigates the role and potential mechanisms of EVs derived from endothelial cells (ECs) in regulating vascular smooth muscle cell (VSMC) calcification under high glucose (HG) condition, with a goal of developing effective prevention and treatment strategies for diabetic arterial calcification. Results The results showed that EVs derived from HG induced ECs (ECHG-EVs) exhibited a bilayer structure morphology with a mean diameter of 74.08 ± 31.78 nm, expressing EVs markers including CD9, CD63 and TSG101, but not express calnexin. ECHG-EVs was internalized by VSMCs and induced VSMC calcification by increasing Runx2 expression and mineralized nodule formation. The circ_0008362 was enriched in ECHG-EVs, and it can be transmitted to VSMCs to promote VSMC calcification both in vitro and in vivo. Mechanistically, miR-1251-5p might be one of the targets of circ_0008362 and they were co-localization in the cytoplasm of VSMCs. Runx2 was identified as the downstream target of miR-1251-5p, and circ_0008362 acted as a sponge, enhancing Runx2 expression and then promoted VSMC calcification. Besides, circ_0008362 could directly interact with Runx2 to aggravate VSMC calcification. Notably, DiR-labelled ECHG-EVs was detected in the vessels of mice. Meanwhile, the level of circ_0008362 and Runx2 were increased significantly, while the expression of miR-1251-5p was decreased significantly in calcified artery tissues of mice. However, inhibiting the release of EVs by GW4869 attenuated arterial calcification in diabetic mice. Finally, the level of circulation of plasma EVs circ_0008362 was significantly higher in patients with DM compared with normal controls. Elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. Conclusions Our findings suggested that circ_0008362 was enriched in EVs derived from ECs and promoted VSMC calcification under HG conditions, both by sponging miR-1251-5p to upregulate Runx2 expression and through direct interaction with Runx2. Furthermore, elevated levels of plasma EVs circ_0008362 were associated with more severe coronary and aorta artery calcification in patients with DM. These results may serve as a potential prevention and therapeutic target for diabetic arterial calcification. Graphical abstract

Details

Language :
English
ISSN :
14752840
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cardiovascular Diabetology
Publication Type :
Academic Journal
Accession number :
edsdoj.84aaa86bcca4e7ab9ed0945964ed27d
Document Type :
article
Full Text :
https://doi.org/10.1186/s12933-024-02440-7