Back to Search Start Over

Engineered biochemical cues of regenerative biomaterials to enhance endogenous stem/progenitor cells (ESPCs)-mediated articular cartilage repair

Authors :
Liangbin Zhou
Jietao Xu
Andrea Schwab
Wenxue Tong
Jiankun Xu
Lizhen Zheng
Ye Li
Zhuo Li
Shunxiang Xu
Ziyi Chen
Li Zou
Xin Zhao
Gerjo J.V.M. van Osch
Chunyi Wen
Ling Qin
Source :
Bioactive Materials, Vol 26, Iss , Pp 490-512 (2023)
Publication Year :
2023
Publisher :
KeAi Communications Co., Ltd., 2023.

Abstract

As a highly specialized shock-absorbing connective tissue, articular cartilage (AC) has very limited self-repair capacity after traumatic injuries, posing a heavy socioeconomic burden. Common clinical therapies for small- to medium-size focal AC defects are well-developed endogenous repair and cell-based strategies, including microfracture, mosaicplasty, autologous chondrocyte implantation (ACI), and matrix-induced ACI (MACI). However, these treatments frequently result in mechanically inferior fibrocartilage, low cost-effectiveness, donor site morbidity, and short-term durability. It prompts an urgent need for innovative approaches to pattern a pro-regenerative microenvironment and yield hyaline-like cartilage with similar biomechanical and biochemical properties as healthy native AC. Acellular regenerative biomaterials can create a favorable local environment for AC repair without causing relevant regulatory and scientific concerns from cell-based treatments. A deeper understanding of the mechanism of endogenous cartilage healing is furthering the (bio)design and application of these scaffolds. Currently, the utilization of regenerative biomaterials to magnify the repairing effect of joint-resident endogenous stem/progenitor cells (ESPCs) presents an evolving improvement for cartilage repair. This review starts by briefly summarizing the current understanding of endogenous AC repair and the vital roles of ESPCs and chemoattractants for cartilage regeneration. Then several intrinsic hurdles for regenerative biomaterials-based AC repair are discussed. The recent advances in novel (bio)design and application regarding regenerative biomaterials with favorable biochemical cues to provide an instructive extracellular microenvironment and to guide the ESPCs (e.g. adhesion, migration, proliferation, differentiation, matrix production, and remodeling) for cartilage repair are summarized. Finally, this review outlines the future directions of engineering the next-generation regenerative biomaterials toward ultimate clinical translation.

Details

Language :
English
ISSN :
2452199X
Volume :
26
Issue :
490-512
Database :
Directory of Open Access Journals
Journal :
Bioactive Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.84a8f1bb0cf41269881814eb1d18192
Document Type :
article
Full Text :
https://doi.org/10.1016/j.bioactmat.2023.03.008