Back to Search
Start Over
Inactivation of various variant types of SARS-CoV-2 by indoor-light-sensitive TiO2-based photocatalyst
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract Photocatalysts are promising materials for solid-state antiviral coatings to protect against the spread of pandemic coronavirus disease (COVID-19). This paper reports that copper oxide nanoclusters grafted with titanium dioxide (CuxO/TiO2) inactivated the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, including its Delta variant, even under dark condition, and further inactivated it under illumination with a white fluorescent bulb. To investigate its inactivation mechanism, the denaturation of spike proteins of SARS-CoV-2 was examined by sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA). In addition to spike proteins, fragmentation of ribonucleic acids in SARS-CoV-2 was investigated by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). As a result, both spike proteins and RNAs in the SARS-CoV-2 virus were damaged by the CuxO/TiO2 photocatalyst even under dark condition and were further damaged under white fluorescent bulb illumination. Based on the present antiviral mechanism, the CuxO/TiO2 photocatalyst will be effective in inactivating other potential mutant strains of SARS-CoV-2. The CuxO/TiO2 photocatalyst can thus be used to reduce the infectious risk of COVID-19 in an indoor environment, where light illumination is turned on during the day and off during the night.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.848c3580c975495b985e7b314ded659f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-09402-7