Back to Search
Start Over
Combination of two novel blocking antibodies, anti-PD-1 antibody ezabenlimab (BI 754091) and anti-LAG-3 antibody BI 754111, leads to increased immune cell responses
- Source :
- OncoImmunology, Vol 11, Iss 1 (2022)
- Publication Year :
- 2022
- Publisher :
- Taylor & Francis Group, 2022.
-
Abstract
- Upregulation of inhibitory receptors, such as lymphocyte activation gene-3 (LAG-3), may limit the antitumor activity of therapeutic antibodies targeting the programmed cell death protein-1 (PD-1) pathway. We describe the binding properties of ezabenlimab, an anti-human PD-1 antibody, and BI 754111, an anti-human LAG-3 antibody, and assess their activity alone and in combination. Ezabenlimab bound with high affinity to human PD-1 (KD = 6 nM) and blocked the interaction of PD-1 with PD-L1 and PD-L2. Ezabenlimab dose-dependently increased interferon-γ secretion in human T cells expressing PD-1 in co-culture with PD-L1-expressing dendritic cells. Administration of ezabenlimab to human PD-1 knock-in mice dose-dependently inhibited growth of MC38 tumors. To reduce immunogenicity, ezabenlimab was reformatted from a human IgG4 to a chimeric variant with a mouse IgG1 backbone (BI 905725) for further in vivo studies. Combining BI 905725 with anti-mouse LAG-3 antibodies improved antitumor activity versus BI 905725 monotherapy in the MC38 tumor model. We generated BI 754111, which bound with high affinity to human LAG-3 and prevented LAG-3 interaction with its ligand, major histocompatibility complex class II. In an in vitro model of antigen-experienced memory T cells expressing PD-1 and LAG-3, interferon-γ secretion increased by an average 1.8-fold versus isotype control (p = 0.027) with BI 754111 monotherapy, 6.9-fold (p
Details
- Language :
- English
- ISSN :
- 2162402X
- Volume :
- 11
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- OncoImmunology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.84794c7453c64c359a1ba6066ae5ae77
- Document Type :
- article
- Full Text :
- https://doi.org/10.1080/2162402X.2022.2080328