Back to Search Start Over

Autonomous Shallow Water Hydrographic Survey Using a Proto-Type USV

Authors :
Laurențiu-Florin Constantinoiu
Mariana Bernardino
Eugen Rusu
Source :
Journal of Marine Science and Engineering, Vol 11, Iss 4, p 799 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Maritime unmanned systems (MUS) have gained widespread usage in a diverse range of hydrographic survey activities, including harbor/port surveys, beach and coastline monitoring, environmental assessment, and military operations. The present article explains a validated, rapid, and reliable technique for processing hydrographic data that was obtained via an autonomous hydrographic survey, and which was executed by a prototype unmanned surface vessel (USV) belonging to the Unmanned Survey Solutions (USS) corporation. The experimentation was part of the annual Multinational Exercise Robotic Experimentation and Prototyping that was augmented by Maritime Unmanned Systems 22 (REPMUS22), which was held in the national waters of Portugal. The main objective of this experimentation was to assess the underwater environment over an ocean beach for an amphibious landing exercise. Moreover, the integration of the multibeam system with the autonomous prototype vessel was assessed. A short comparison between the USV survey and a traditional vessel multibeam survey is presented, whereby the advantages of performing an autonomous survey operation near the coastline is emphasized. A correlation between a known multibeam processing technique and the dissemination of a rapid but consistent product for operational use is described, highlighting the applicability of the technique for the data collected from small experimental platforms. Moreover, this study outlines the relationship between the particular errors observed in autonomous small vehicles and in conventional data processing methods. The resultant cartographic outputs from the hydrographic survey are presented, emphasizing the specific inaccuracies within the raw data and the suitability of distinct hydrographic products for various user domains.

Details

Language :
English
ISSN :
20771312
Volume :
11
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Journal of Marine Science and Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.8444efc0f9b64f119bc8799ecdd8ed6d
Document Type :
article
Full Text :
https://doi.org/10.3390/jmse11040799