Back to Search
Start Over
Different Patterns in Daytime and Nighttime Thermal Effects of Urbanization in Beijing-Tianjin-Hebei Urban Agglomeration
- Source :
- Remote Sensing, Vol 9, Iss 2, p 121 (2017)
- Publication Year :
- 2017
- Publisher :
- MDPI AG, 2017.
-
Abstract
- Surface urban heat island (SUHI) in the context of urbanization has gained much attention in recent decades; however, the seasonal variations of SUHI and their drivers are still not well documented. In this study, the Beijing-Tianjin-Hebei (BTH) urban agglomeration, one of the most typical areas experiencing drastic urbanization in China, was selected to study the SUHI intensity (SUHII) based on remotely sensed land surface temperature (LST) data. Pure and unchanged urban and rural pixels from 2000 to 2010 were chosen to avoid non-concurrency between land cover data and LST data and to estimate daytime and nighttime thermal effects of urbanization. Different patterns of the seasonal variations were found in daytime and nighttime SUHIIs. Specifically, the daytime SUHII in summer (4 °C) was more evident than in other seasons while a cold island phenomenon was found in winter; the nighttime SUHII was always positive and higher than the daytime one in all the seasons except summer. Moreover, we found the highest daytime SUHII in August, which is the growing peak stage of summer maize, while nighttime SUHII showed a trough in the same month. Seasonal variations of daytime SUHII showed higher significant correlations with the seasonal variations of ∆LAI (leaf area index) (R2 = 0.81, r = −0.90) compared with ∆albedo (R2 = 0.61, r = −0.78) and background daytime LST (R2 = 0.69, r = 0.83); moreover, agricultural practices (double-cropping system) played an important role in the seasonal variations of daytime SUHII. Seasonal variations of the nighttime SUHII did not show significant correlations with either of seasonal variations of ∆LAI, ∆albedo, and background nighttime LST, which implies different mechanisms in nighttime SUHII variation needing future studies.
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 9
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.841e87f86ba44dfa9de0b51b54ae0cd3
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/rs9020121