Back to Search
Start Over
On the oscillation of differential equations in frame of generalized proportional fractional derivatives
- Source :
- AIMS Mathematics, Vol 5, Iss 2, Pp 856-871 (2020)
- Publication Year :
- 2020
- Publisher :
- AIMS Press, 2020.
-
Abstract
- In this paper, sufficient conditions are established for the oscillation of all solutions of generalized proportional fractional differential equations of the form \begin{equation*} \left\{ \begin{array}{l} {_{a}D}^{\alpha, \rho}x(t) + \xi_1(t,x(t)) = \mu(t) + \xi_2(t,x(t)),\quad t>a \ge 0,\\[0.3cm] \lim_{t\to a^{+}} {_{a}I}^{j-\alpha, \rho}x(t) = b_j,\quad j=1,2,\ldots,n, \end{array} \right. \end{equation*}where $n = \lceil \alpha \rceil$, ${_{a}D}^{\alpha, \rho}$ is the generalized proportional fractional derivative operator of order $\alpha\in \mathbb{C}$, $Re(\alpha)\ge 0$, $0
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 5
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.83cfa98c1a4141c48d7a5c6e71086782
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.2020058/fulltext.html