Back to Search Start Over

On the oscillation of differential equations in frame of generalized proportional fractional derivatives

Authors :
Weerawat Sudsutad
Jehad Alzabut
Chutarat Tearnbucha
Chatthai Thaiprayoon
Source :
AIMS Mathematics, Vol 5, Iss 2, Pp 856-871 (2020)
Publication Year :
2020
Publisher :
AIMS Press, 2020.

Abstract

In this paper, sufficient conditions are established for the oscillation of all solutions of generalized proportional fractional differential equations of the form \begin{equation*} \left\{ \begin{array}{l} {_{a}D}^{\alpha, \rho}x(t) + \xi_1(t,x(t)) = \mu(t) + \xi_2(t,x(t)),\quad t>a \ge 0,\\[0.3cm] \lim_{t\to a^{+}} {_{a}I}^{j-\alpha, \rho}x(t) = b_j,\quad j=1,2,\ldots,n, \end{array} \right. \end{equation*}where $n = \lceil \alpha \rceil$, ${_{a}D}^{\alpha, \rho}$ is the generalized proportional fractional derivative operator of order $\alpha\in \mathbb{C}$, $Re(\alpha)\ge 0$, $0

Details

Language :
English
ISSN :
24736988
Volume :
5
Issue :
2
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.83cfa98c1a4141c48d7a5c6e71086782
Document Type :
article
Full Text :
https://doi.org/10.3934/math.2020058/fulltext.html