Back to Search
Start Over
Parameter Design of a Photovoltaic Storage Battery Integrated System for Detached Houses Based on Nondominated Sorting Genetic Algorithm-II
- Source :
- Buildings, Vol 14, Iss 6, p 1834 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- With the deteriorating environment and excessive consumption of primary energy, solar energy has become used in buildings worldwide for renewable energy. Due to the fluctuations of solar radiation, a solar photovoltaic (PV) power system is often combined with a storage battery to improve the stability of a building’s energy supply. In addition, the real-time energy consumption pattern of the residual houses fluctuates; a larger size for a PV and battery integrated system can offer more solar energy but also bring a higher equipment cost, and a smaller size for the integrated system may achieve an energy-saving effect. The traditional methods to size a PV and battery integrated system for a detached house are based on the experience method or the traversal algorithm. However, the experience method cannot consider the real-time fluctuating energy demand of a detached house, and the traversal algorithm costs too much computation time. Therefore, this study applies Nondominated Sorting Genetic Algorithm-II (NSGA-II) to size a PV and battery integrated system by optimizing total electricity cost and usage of the grid electricity simultaneously. By setting these two indicators as objectives separately, single-objective genetic algorithms (GAs) are also deployed to find the optimal size specifications of the PV and battery integrated system. The optimal solutions from NSGA-II and single-objective GAs are mutually verified, showing the high accuracy of NSGA-II, and the rapid convergence process demonstrates the time-saving effect of all these deployed genetic algorithms. The robustness of the deployed NSGA-II to various grid electricity prices is also tested, and similar optimal solutions are obtained. Compared with the experience method, the final optimal solution from NSGA-II saves 68.3% of total electricity cost with slightly more grid electricity used. Compared with the traversal algorithm, NSGA-II saves 94% of the computation time and provides more accurate size specifications for the PV and battery integrated system. This study suggests that NSGA-II is suitable for sizing a PV and battery integrated system for a detached house.
Details
- Language :
- English
- ISSN :
- 20755309
- Volume :
- 14
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Buildings
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.83c9b3dd3e3a466ba7cc792df7c7bdc9
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/buildings14061834