Back to Search
Start Over
On graphs with a few distinct reciprocal distance Laplacian eigenvalues
- Source :
- AIMS Mathematics, Vol 8, Iss 12, Pp 29008-29016 (2023)
- Publication Year :
- 2023
- Publisher :
- AIMS Press, 2023.
-
Abstract
- For a $ \nu $-vertex connected graph $ \Gamma $, we consider the reciprocal distance Laplacian matrix defined as $ RD^L(\Gamma) = RT(\Gamma)-RD(\Gamma) $, i.e., $ RD^L(\Gamma) $ is the difference between the diagonal matrix of the reciprocal distance degrees $ RT(\Gamma) $ and the Harary matrix $ RD(\Gamma) $. In this article, we determine the graphs with exactly two distinct reciprocal distance Laplacian eigenvalues.We completely characterize the graph classes with a $ RD^L $ eigenvalue of multiplicity $ \nu-2 $. Moreover, we characterize families of graphs with reciprocal distance Laplacian eigenvalue whose multiplicity is $ \nu-3 $.
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 8
- Issue :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.82c451bf18714230b0b6dfb03c2e78be
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.20231485?viewType=HTML