Back to Search Start Over

On graphs with a few distinct reciprocal distance Laplacian eigenvalues

Authors :
Milica Anđelić
Saleem Khan
S. Pirzada
Source :
AIMS Mathematics, Vol 8, Iss 12, Pp 29008-29016 (2023)
Publication Year :
2023
Publisher :
AIMS Press, 2023.

Abstract

For a $ \nu $-vertex connected graph $ \Gamma $, we consider the reciprocal distance Laplacian matrix defined as $ RD^L(\Gamma) = RT(\Gamma)-RD(\Gamma) $, i.e., $ RD^L(\Gamma) $ is the difference between the diagonal matrix of the reciprocal distance degrees $ RT(\Gamma) $ and the Harary matrix $ RD(\Gamma) $. In this article, we determine the graphs with exactly two distinct reciprocal distance Laplacian eigenvalues.We completely characterize the graph classes with a $ RD^L $ eigenvalue of multiplicity $ \nu-2 $. Moreover, we characterize families of graphs with reciprocal distance Laplacian eigenvalue whose multiplicity is $ \nu-3 $.

Details

Language :
English
ISSN :
24736988
Volume :
8
Issue :
12
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.82c451bf18714230b0b6dfb03c2e78be
Document Type :
article
Full Text :
https://doi.org/10.3934/math.20231485?viewType=HTML