Back to Search
Start Over
Two-dimensional meshless solution of the non-linear convection diffusion reaction equation by the Local Hermitian Interpolation method
- Source :
- Ingeniería y Ciencia, Vol 9, Iss 17 (2013)
- Publication Year :
- 2013
- Publisher :
- Universidad EAFIT, 2013.
-
Abstract
- A meshless numerical scheme is developed for solving a generic version of the non-linear convection-diffusion-reaction equation in two-dimensional domains. The Local Hermitian Interpolation (LHI) method is employed for the spatial discretization and several strategies are implemented for the solution of the resulting non-linear equation system, among them the Picard iteration, the Newton Raphson method and a truncated version of the Homotopy Analysis Method (HAM). The LHI method is a local collocation strategy in which Radial Basis Functions (RBFs) are employed to build the interpolation function. Unlike the original Kansa’s Method, the LHI is applied locally and the boundary and governing equation differential operators are used to obtain the interpolation function, giving a symmetric and non-singular collocation matrix. Analytical and Numerical Jacobian matrices are tested for the Newton-Raphson method and the derivatives of the governing equation with respect to the homotopy parameter are obtained analytically. The numerical scheme is verified by comparing the obtained results to the one-dimensional Burgers’ and two-dimensional Richards’ analytical solutions. The same results are obtained for all the non-linear solvers tested, but better convergence rates are attained with the Newton Raphson method in a double iteration scheme. MSC: 65H20, 65N35
Details
- Language :
- English, Spanish; Castilian
- ISSN :
- 17949165 and 22564314
- Volume :
- 9
- Issue :
- 17
- Database :
- Directory of Open Access Journals
- Journal :
- Ingeniería y Ciencia
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.82bd870b9fa145e7873f43daafe54087
- Document Type :
- article
- Full Text :
- https://doi.org/10.17230/ingciecia.9.17.2