Back to Search
Start Over
SNOW AND CLOUD DISCRIMINATION USING CONVOLUTIONAL NEURAL NETWORKS
- Source :
- ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol IV-5, Pp 59-63 (2018)
- Publication Year :
- 2018
- Publisher :
- Copernicus Publications, 2018.
-
Abstract
- Snow is an important feature on our planet, and measuring its extent has advantages in climate studies. Snow mapping through satellite remote sensing is often affected by cloud cover. This issue can be resolved by using short wave infrared (SWIR) sensors. In order to obtain an effective cloud mask, our study aims to use SWIR data of a ResourceSat-2 satellite. We employ Convolutional Neural Networks (CNN) to discriminate similar pixels of clouds and snow. The technique is expected to give a high accuracy compared to traditional methods such as thresholding. The cloud mask thus produced can also be used for creating the metadata for Indian Remote Sensing products.
Details
- Language :
- English
- ISSN :
- 21949042 and 21949050
- Volume :
- IV-5
- Database :
- Directory of Open Access Journals
- Journal :
- ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.82697960b4234bb2afc06463967dea46
- Document Type :
- article
- Full Text :
- https://doi.org/10.5194/isprs-annals-IV-5-59-2018