Back to Search Start Over

Restoration of aberrant gene expression of monocytes in systemic lupus erythematosus via a combined transcriptome-reversal and network-based drug repurposing strategy

Authors :
Dimitrios Nikolakis
Panagiotis Garantziotis
George Sentis
Antonis Fanouriakis
George Bertsias
Eleni Frangou
Dionysis Nikolopoulos
Aggelos Banos
Dimitrios T Boumpas
Source :
BMC Genomics, Vol 24, Iss 1, Pp 1-11 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Monocytes -key regulators of the innate immune response- are actively involved in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel compounds that might serve as monocyte-directed targeted therapies in SLE. Results We performed mRNA sequencing in monocytes from 15 patients with active SLE and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Leveraging the drug repurposing platforms iLINCS, CLUE and L1000CDS2, we identified perturbagens capable of reversing the SLE monocyte signature. We identified transcription factors and microRNAs (miRNAs) that regulate the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases, respectively. A gene regulatory network, integrating implicated transcription factors and miRNAs was constructed, and drugs targeting central components of the network were retrieved from the DGIDb database. Inhibitors of the NF-κB pathway, compounds targeting the heat shock protein 90 (HSP90), as well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted to efficiently counteract the aberrant monocyte gene signature in SLE. An additional analysis was conducted, to enhance the specificity of our drug repurposing approach on monocytes, using the iLINCS, CLUE and L1000CDS2 platforms on publicly available datasets from circulating B-lymphocytes, CD4+ and CD8+ T-cells, derived from SLE patients. Through this approach we identified, small molecule compounds, that could potentially affect more selectively the transcriptome of SLE monocytes, such as, certain NF-κB pathway inhibitors, Pim-1 and SYK kinase inhibitors. Furthermore, according to our network-based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent potential drug candidates in SLE. Conclusions Application of two independent - a transcriptome-reversal and a network-based -drug repurposing strategies uncovered novel agents that might remedy transcriptional disturbances of monocytes in SLE.

Details

Language :
English
ISSN :
14712164
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.81d71637fbec4a01b5d91f1a65f41775
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-023-09275-8