Back to Search Start Over

Normalized solutions for a coupled fractional Schrödinger system in low dimensions

Authors :
Meng Li
Jinchun He
Haoyuan Xu
Meihua Yang
Source :
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-29 (2020)
Publication Year :
2020
Publisher :
SpringerOpen, 2020.

Abstract

Abstract We consider the following coupled fractional Schrödinger system: { ( − Δ ) s u + λ 1 u = μ 1 | u | 2 p − 2 u + β | v | p | u | p − 2 u , ( − Δ ) s v + λ 2 v = μ 2 | v | 2 p − 2 v + β | u | p | v | p − 2 v in R N , $$ \textstyle\begin{cases} (-\Delta )^{s}u+\lambda _{1}u=\mu _{1} \vert u \vert ^{2p-2}u+ \beta \vert v \vert ^{p} \vert u \vert ^{p-2}u, \\ (-\Delta )^{s}v+\lambda _{2}v=\mu _{2} \vert v \vert ^{2p-2}v+\beta \vert u \vert ^{p} \vert v \vert ^{p-2}v \end{cases}\displaystyle \quad \text{in } {\mathbb{R}^{N}}, $$ with 0 < s < 1 $0< s 0 $\beta >0$ .

Details

Language :
English
ISSN :
16872770
Volume :
2020
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Boundary Value Problems
Publication Type :
Academic Journal
Accession number :
edsdoj.819c79d5e8ef4ac2acd130ba9612f5e8
Document Type :
article
Full Text :
https://doi.org/10.1186/s13661-020-01463-9