Back to Search Start Over

Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling

Authors :
Jingjuan Hu
Fan Deng
Bingcheng Zhao
Zebin Lin
Qishun Sun
Xiao Yang
Mei Wu
Shida Qiu
Yu Chen
Zhengzheng Yan
Sidan Luo
Jin Zhao
Weifeng Liu
Cai Li
Ke Xuan Liu
Source :
Microbiome, Vol 10, Iss 1, Pp 1-21 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background Intestinal ischemia/reperfusion (I/R) injury has high morbidity and mortality rates. Gut microbiota is a potential key factor affecting intestinal I/R injury. Populations exhibit different sensitivities to intestinal I/R injury; however, whether this interpopulation difference is related to variation in gut microbiota is unclear. Here, to elucidate the interaction between the gut microbiome and intestinal I/R injury, we performed 16S DNA sequencing on the preoperative feces of C57BL/6 mice and fecal microbiota transplantation (FMT) experiments in germ-free mice. The transwell co-culture system of small intestinal organoids extracted from control mice and macrophages extracted from control mice or Toll-like receptor 2 (TLR2)-deficient mice or interleukin-10 (IL-10)-deficient mice were established separately to explore the potential mechanism of reducing intestinal I/R injury. Results Intestinal I/R-sensitive (Sen) and intestinal I/R-resistant (Res) mice were first defined according to different survival outcomes of mice suffering from intestinal I/R. Fecal microbiota composition and diversity prior to intestinal ischemia differed between Sen and Res mice. The relative abundance of Lactobacillus murinus (L. murinus) at the species level was drastically higher in Res than that in Sen mice. Clinically, the abundance of L. murinus in preoperative feces of patients undergoing cardiopulmonary bypass surgery was closely related to the degree of intestinal I/R injury after surgery. Treatment with L. murinus significantly prevented intestinal I/R-induced intestinal injury and improved mouse survival, which depended on macrophages involvement. Further, in vitro experiments indicated that promoting the release of IL-10 from macrophages through TLR2 may be a potential mechanism for L. murinus to reduce intestinal I/R injury. Conclusion The gut microbiome is involved in the postoperative outcome of intestinal I/R. Lactobacillus murinus alleviates mice intestinal I/R injury through macrophages, and promoting the release of IL-10 from macrophages through TLR2 may be a potential mechanism for L. murinus to reduce intestinal I/R injury. This study revealed a novel mechanism of intestinal I/R injury and a new therapeutic strategy for clinical practice. Video Abstract.

Details

Language :
English
ISSN :
20492618
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbiome
Publication Type :
Academic Journal
Accession number :
edsdoj.81939f7cc08041b697911e0a9fb7b7e0
Document Type :
article
Full Text :
https://doi.org/10.1186/s40168-022-01227-w