Back to Search
Start Over
The intersection graph of annihilator submodules of a module
- Source :
- Opuscula Mathematica, Vol 39, Iss 4, Pp 577-588 (2019)
- Publication Year :
- 2019
- Publisher :
- AGH Univeristy of Science and Technology Press, 2019.
-
Abstract
- Let \(R\) be a commutative ring and \(M\) be a Noetherian \(R\)-module. The intersection graph of annihilator submodules of \(M\), denoted by \(GA(M)\) is an undirected simple graph whose vertices are the classes of elements of \(Z_R(M)\setminus \text{Ann}_R(M)\), for \(a,b \in R\) two distinct classes \([a]\) and \([b]\) are adjacent if and only if \(\text{Ann}_M(a)\cap \text{Ann}_M(b)\neq 0\). In this paper, we study diameter and girth of \(GA(M)\) and characterize all modules that the intersection graph of annihilator submodules are connected. We prove that \(GA(M)\) is complete if and only if \(Z_R(M)\) is an ideal of \(R\). Also, we show that if \(M\) is a finitely generated \(R\)-module with \(r(\text{Ann}_R(M))\neq \text{Ann}_R(M)\) and \(|m-\text{Ass}_R(M)|=1\) and \(GA(M)\) is a star graph, then \(r(\text{Ann}_R(M))\) is not a prime ideal of \(R\) and \(|V(GA(M))|=|\text{Min}\,\text{Ass}_R(M)|+1\).
Details
- Language :
- English
- ISSN :
- 12329274
- Volume :
- 39
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Opuscula Mathematica
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.816787aa645d4bab9639014f3a46011b
- Document Type :
- article
- Full Text :
- https://doi.org/10.7494/OpMath.2019.39.4.577