Back to Search Start Over

Multi-omics analysis identifies drivers of protein phosphorylation

Authors :
Tian Zhang
Gregory R. Keele
Isabela Gerdes Gyuricza
Matthew Vincent
Catherine Brunton
Timothy A. Bell
Pablo Hock
Ginger D. Shaw
Steven C. Munger
Fernando Pardo-Manuel de Villena
Martin T. Ferris
Joao A. Paulo
Steven P. Gygi
Gary A. Churchill
Source :
Genome Biology, Vol 24, Iss 1, Pp 1-29 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Phosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated. Results We quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped ~700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes. Conclusions Together, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.

Details

Language :
English
ISSN :
1474760X
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Genome Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.812d1f4d20a34130b1e4a7ae5bae7fb5
Document Type :
article
Full Text :
https://doi.org/10.1186/s13059-023-02892-2